AIF-1 expression regulates endothelial cell activation, signal transduction, and vasculogenesis.

نویسندگان

  • Ying Tian
  • Surbhi Jain
  • Sheri E Kelemen
  • Michael V Autieri
چکیده

Endothelial cell (EC) activation plays a key role in vascular inflammation, thrombosis, and angiogenesis. Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, calcium-binding, inflammation-responsive scaffold protein that has been implicated in the regulation of inflammation. The expression and function of AIF-1 in EC is uncharacterized, and the purpose of this study was to characterize AIF-1 expression and function in ECs. AIF-1 expression colocalized with CD31-positive ECs in neointima of inflamed human arteries but not normal arteries. AIF-1 is detected at low levels in unstimulated EC, but expression can be increased in response to serum and soluble factors. Stable transfection of AIF-1 small interfering RNA (siRNA) in ECs reduced AIF-1 protein expression by 73% and significantly reduced EC proliferation and migration (P < 0.05 and 0.001). Rescue of AIF-1 expression restored both proliferation and migration of siRNA-expressing ECs, and AIF-1 overexpression enhanced both of these activities, suggesting a strong association between AIF-1 expression and EC activation. Activation of mitogen-activated protein kinase p44/42 and PAK1 was significantly reduced in siRNA ECs challenged with inflammatory stimuli. Reduction of AIF-1 expression did not decrease EC tube-like structure or microvessel formation from aortic rings, but overexpression of AIF-1 did significantly increase the number and complexity of these structures. These data indicate that AIF-1 expression plays an important role in signal transduction and activation of ECs and may also participate in new vessel formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erythrocyte Lysis and Heme Release Probably via Binding to Hemoglobin

Heme is present in the hemoglobin in blood. Extracellular hemoglobin is easily oxidized and readily releases heme. Free heme can be quite cytotoxic, particularly in the presence of oxidants or activated phagocytes. Because of the hydrophobic nature of heme, it can rapidly intercalate with cell membranes and cause severe damage. Hemoglobin-derived heme has been demonstrated to act as a catalyst ...

متن کامل

TNFSF15 inhibits vasculogenesis by regulating relative levels of membrane-bound and soluble isoforms of VEGF receptor 1.

Mouse bone marrow-derived Lin(-)-Sca-1(+) endothelial progenitor cell (EPC) has pluripotent abilities such as supporting neovascularization. Vascular endothelial growth factor (VEGF) receptor 1 (VEGFR1) (Flt1) recognizes various VEGF isoforms and is critically implicated in a wide range of physiological and pathological settings, including vasculogenesis. Mouse EPC expresses two isoforms of VEG...

متن کامل

Inhibition of AIF-1 expression by constitutive siRNA expression reduces macrophage migration, proliferation, and signal transduction initiated by atherogenic stimuli.

Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, calcium-binding, inflammation-responsive scaffold protein. Several studies have reported increased AIF-1 expression in activated macrophages and have implicated AIF-1 as a marker of activated macrophages. However, the function of AIF-1 in macrophages and the mechanism whereby it participates in macrophage activation are unknown at this t...

متن کامل

Recent Advances in T Cell Signaling in Aging

The immune system of mammalian organisms undergoes alterations that may account for an increased susceptibility to certain infections, autoimmune diseases, or malignancies. Well characterized are age related defect in T cell functions and cell mediated immunity. Although it is well established that the functional properties of T cells decrease with age, its biochemical and molecular nature is...

متن کامل

Activation of SHH signaling pathway promotes vasculogenesis in post-myocardial ischemic-reperfusion injury.

This study aimed to investigate the potential roles of sonic Hedgehog (SHH) expression in vasculogenesis in post-myocardial ischemic-reperfusion injury (MIRI) and its underlying mechanism. Cardiac microvascular endothelial cells (CMECs) isolated from the SD rat hearts tissues were used to construct the MIRI model. mRNA level of SHH in control cells and MIRI cells was detected using RT-PCR analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 296 2  شماره 

صفحات  -

تاریخ انتشار 2009